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Abstract

In recent work, several authors have introduced methods for sparse canonical correlation anal-
ysis (sparse CCA). Suppose that two sets of measurements are available on the same set of ob-
servations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of
variables that are highly correlated with each other. It has been shown to be useful in the analysis
of high-dimensional genomic data, when two sets of assays are available on the same set of sam-
ples. In this paper, we propose two extensions to the sparse CCA methodology. (1) Sparse CCA
is an unsupervised method; that is, it does not make use of outcome measurements that may be
available for each observation (e.g., survival time or cancer subtype). We propose an extension
to sparse CCA, which we call sparse supervised CCA, which results in the identification of linear
combinations of the two sets of variables that are correlated with each other and associated with
the outcome. (2) It is becoming increasingly common for researchers to collect data on more than
two assays on the same set of samples; for instance, SNP, gene expression, and DNA copy number
measurements may all be available. We develop sparse multiple CCA in order to extend the sparse
CCA methodology to the case of more than two data sets. We demonstrate these new methods on
simulated data and on a recently published and publicly available diffuse large B-cell lymphoma
data set.

KEYWORDS: sparse canonical correlation analysis, gene expression, microarray, DNA copy
number, CGH, SNP, lasso, fused lasso

∗We thank Andrew Beck, Patrick Brown, Jonathan Pollack, Robert West, and anonymous re-
viewers for helpful comments. Daniela Witten was supported by a National Defense Science and
Engineering Graduate Fellowship. Robert Tibshirani was partially supported by National Science
Foundation Grant DMS-9971405 and National Institutes of Health Contract N01-HV-28183.



1 Introduction

Canonical correlation analysis (CCA), due to Hotelling (1936), is a classical
method for determining the relationship between two sets of variables. Given
two data sets X1 and X2 of dimensions n × p1 and n × p2 on the same set
of n observations, CCA seeks linear combinations of the variables in X1 and
the variables in X2 that are maximally correlated with each other. That is,
w1 ∈ Rp1 and w2 ∈ Rp2 maximize the CCA criterion, given by

maximizew1,w2w
T
1 XT

1 X2w2 subject to wT
1 XT

1 X1w1 = wT
2 XT

2 X2w2 = 1, (1)

where we assume that the columns of X1 and X2 have been standardized to
have mean zero and standard deviation one. In this paper, we will refer to w1

and w2 as the canonical vectors (or weights), and we will refer to X1w1 and
X2w2 as the canonical variables.

In recent years, CCA has gained popularity as a method for the analysis
of genomic data. It has become common for researchers to perform multiple
assays on the same set of patient samples; for instance, DNA copy number
(or comparative genomic hybridization, CGH), gene expression, and single
nucleotide polymorphism (SNP) data might all be available. Examples of
studies involving two or more genomic assays on the same set of samples include
Hyman et al. (2002), Pollack et al. (2002), Morley et al. (2004), Stranger et al.
(2005), and Stranger et al. (2007). In the case of, say, DNA copy number and
gene expression measurements on a single set of patient samples, one might
wish to perform CCA in order to identify genes whose expression is correlated
with regions of genomic gain or loss. However, genomic data is characterized
by the fact that the number of features generally greatly exceeds the number
of observations; for this reason, CCA cannot be applied directly.

To circumvent this problem, Parkhomenko et al. (2007), Waaijenborg et al.
(2008), Parkhomenko et al. (2009), Le Cao et al. (2009), and Witten et al.
(2009) have proposed methods for penalized CCA. In this paper, we will restrict
ourselves to the criterion proposed in Witten et al. (2009), which takes the form

maximizew1,w2w
T
1 XT

1 X2w2

subject to ||w1||2 ≤ 1, ||w2||2 ≤ 1, P1(w1) ≤ c1, P2(w2) ≤ c2 (2)

where P1 and P2 are convex penalty functions. Since P1 and P2 are generally
chosen to yield w1 and w2 sparse, we call this the sparse CCA criterion.
This criterion follows from applying penalties to w1 and w2 and also from
assuming that the covariance matrix of the features is diagonal; that is, we
replace wT

1 XT
1 X1w1 and wT

2 XT
2 X2w2 in the CCA criterion with wT

1 w1 and
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wT
2 w2. The sparse CCA criterion results in w1 and w2 unique, even when

p1, p2 � n, for appropriate choices of P1 and P2.
It has been shown that sparse CCA can be used to identify genes that

have expression that is correlated with regions of DNA copy number change
(Waaijenborg et al. 2008, Witten et al. 2009), to identify genes that have
expression that is correlated with SNPs (Parkhomenko et al. 2009), and to
identify sets of genes on two different microarray platforms that have correlated
expression (Le Cao et al. 2009). However, some questions remain:

1. Sometimes, in addition to data matrices X1 ∈ Rn×p1 and X2 ∈ Rn×p2 , a
vector of outcome measurements in Rn is also available. For instance, a
survival time might be known for each patient. CCA and sparse CCA
are unsupervised methods; that is, they do not make use of an outcome.
However, if outcome measurements are available, then one might seek
sets of variables in the two data sets that are correlated with each other
and associated with the outcome.

2. More than two sets of variables on the same set of observations might
be available. For instance, it is becoming increasingly common for re-
searchers to collect gene expression, SNP, and DNA copy number mea-
surements on the same set of patient samples. In this case, an extension
of sparse CCA to the case of more than two data sets is required.

In this paper, we develop extensions to sparse CCA that address these situa-
tions and others.

The rest of this paper is organized as follows. Section 2 contains methods
for sparse CCA when the data consist of matrices X1 and X2. In Section 2.1,
we present details of the sparse CCA method from Witten et al. (2009), and
in Section 2.2, we explain the connections between that method and those
of Waaijenborg et al. (2008), Le Cao et al. (2009), and Parkhomenko et al.
(2009). The remainder of Section 2 contains some extensions of sparse CCA
for two sets of features on a single set of observations. Section 3 contains an
explanation of sparse multiple CCA, an extension of sparse CCA to the case of
K data sets X1, ...,XK with features on a single set of samples. In Section 4,
we present sparse supervised CCA, a method for performing sparse CCA when
the data consist of matrices X1, X2, and y, a vector containing an outcome
measurement for each sample. Section 5 contains the discussion. Throughout
the paper, methods are applied to the diffuse large B-cell lymphoma (DLBCL)
data set of Lenz et al. (2008), which consists of 17350 gene expression mea-
surements and 386165 DNA copy number measurements for 203 patients. For
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each patient, two clinical outcomes are available: a possibly censored survival
time, as well as the subtype of DLBCL to which that patient’s disease belongs.

2 Sparse CCA

2.1 The sparse CCA method

The sparse CCA criterion was given in Equation (2) for general penalty func-
tions P1 and P2. We will be interested in two specific forms of these penalty
functions:

• P1 is an L1 (or lasso) penalty; that is, P1(w1) = ||w1||1. This penalty
will result in w1 sparse for c1 chosen appropriately. We assume that
1 ≤ c1 ≤

√
p1.

• P1 is a fused lasso penalty (see e.g. Tibshirani et al. 2005), of the form
P1(w1) =

∑
j |w1j| +

∑
j |w1j − w1(j−1)|. This penalty will result in w1

sparse and smooth, and is intended for cases in which the features in X1

have a natural ordering along which smoothness is expected.

In order to indicate the form of the penalties P1 and P2 in use, we will refer to
the method as sparse CCA(P1, P2). That is, if both penalties are L1, then we
will call this sparse CCA(L1, L1), and if P1 is an L1 penalty and P2 a fused
lasso penalty, then we will call it sparse CCA(L1, FL) (where “FL” indicates
fused lasso). Note that when P1 and P2 are L1 or fused lasso penalties, the
resulting canonical vectors are unique, even when p1, p2 � n. Witten et al.
(2009) propose the use of sparse CCA(L1, FL) in the case where X1 corre-
sponds to gene expression measurements and X2 corresponds to copy number
measurements (ordered by position along the chromosomes); this is related to
the proposal of Tibshirani & Wang (2008) for estimating copy number for a
single CGH sample.

Now, consider the criterion (2) with P1 and P2 convex penalty functions.
With w1 fixed, the criterion is convex in w2, and with w2 fixed, it is convex
in w1. The objective function of this biconvex criterion increases in each step
of a simple iterative algorithm.

Algorithm for sparse CCA:

1. Initialize w2 to have L2 norm 1.

2. Iterate the following two steps until convergence:

3
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(a) w1 ← arg maxw1 wT
1 XT

1 X2w2 subject to ||w1||2 ≤ 1, P1(w1) ≤ c1.

(b) w2 ← arg maxw2 wT
1 XT

1 X2w2 subject to ||w2||2 ≤ 1, P2(w2) ≤ c2.

If P1 is an L1 penalty, then the update has the form

w1 ←
S(XT

1 X2w2,∆1)

||S(XT
1 X2w2,∆1)||2

, (3)

where ∆1 = 0 if this results in ||w1||1 ≤ c1; otherwise, ∆1 > 0 is chosen so
that ||w1||1 = c1. Here, S(·) denotes the soft-thresholding operator; that is,
S(a, c) = sgn(a)(|a| − c)+. Soft-thresholding arises in the update due to the
L1 penalty and the assumption that the covariance matrices are independent.
∆1 can be chosen by a binary search. If P1 is instead a fused lasso penalty,
then a slightly modified version of the sparse CCA criterion yields the update
step

w1 ← argminw1{
1

2
||XT

1 X2w2−w1||2+λ1

∑
j

|w1j|+λ2

∑
j

|w1j−w1(j−1)|}, (4)

which can be computed using software implementing fused lasso regression.
w2 can be updated analogously.

Methods for selecting tuning parameter values and assessing significance
of the resulting canonical vectors are presented in Appendix A. The above
algorithm is easily extended to obtain multiple canonical vectors, as described
in Witten et al. (2009) and summarized in Appendix B. However, to simplify
interpretation of the examples presented in this paper, we will only consider
the first canonical vectors w1 and w2, as given in the criterion (2).

2.2 Connections with other sparse CCA proposals

This paper extends the sparse CCA proposal of Witten et al. (2009). As
mentioned earlier, the Witten et al. (2009) method is closely related to a
number of other methods for sparse CCA. We briefly review those methods
here.

Waaijenborg et al. (2008) first recast classical CCA as an iterative regres-
sion procedure; then an elastic net penalty is applied in order to obtain penal-
ized canonical vectors. An approximation of the iterative elastic net procedure
results in an algorithm that is similar to that of Witten et al. (2009) in the
case of L1 penalties on w1 and w2. However, Waaijenborg et al. (2008) do not
appear to be exactly optimizing a criterion.
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Parkhomenko et al. (2009) develop an iterative algorithm for estimating
the singular vectors of XT

1 X2. At each step, they regularize the estimates of
the singular vectors by soft-thresholding. Though they do not explicity state
a criterion, it appears that they are approximately optimizing a criterion that
is related to (2) with L1 penalties. However, they use the Lagrange form,
rather than the bound form, of the constraints on w1 and w2. Their algorithm
is closely related to that of Witten et al. (2009), though extra normalization
steps are required due to computational problems with the Lagrange form of
the constraints. The algorithm of Le Cao et al. (2009) is also closely related
to those of Parkhomenko et al. (2009) and Witten et al. (2009), though again
Le Cao et al. (2009) use the Lagrange form, rather than the bound form, of
the penalties.

Hence, the Waaijenborg et al. (2008), Parkhomenko et al. (2009), Le Cao
et al. (2009) and Witten et al. (2009) methods are all closely related; we pursue
the criterion (2) in this paper.

2.3 Sparse CCA with nonnegative weights

The sparse CCA method will result in canonical vectors w1 and w2 that are
sparse, if the penalties P1 and P2 are chosen appropriately. However, the
nonzero elements of w1 and w2 may be of different signs. In some cases, one
might seek a sparse weighted average of the features in X1 that is correlated
with a sparse weighted average of the features in X2. Then one will want to
additionally restrict the elements of w1 and w2 to be nonnegative (or nonpos-
itive). If we require the elements of w1 and w2 to be nonnegative, the sparse
CCA criterion becomes

maximizew1,w2 wT
1 XT

1 X2w2 subject to ||w1||2 ≤ 1, ||w2||2 ≤ 1,

w1j ≥ 0, w2j ≥ 0, P1(w1) ≤ c1, P2(w2) ≤ c2, (5)

and the resulting algorithm is as follows:

Algorithm for sparse CCA with nonnegative weights:

1. Initialize w2 to have L2 norm 1.

2. Iterate the following two steps until convergence:

(a) w1 ← arg maxw1 wT
1 XT

1 X2w2 subject to ||w1||2 ≤ 1, w1j ≥ 0, P1(w1) ≤
c1.

5
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(b) w2 ← arg maxw2 wT
1 XT

1 X2w2 subject to ||w2||2 ≤ 1, w2j ≥ 0, P2(w2) ≤
c2.

Consider the criterion (5) with w1 fixed; we can write the optimization
problem for w2 with XT

2 X1w1 = a as

minimizew2 − aTw2 subject to ||w2||2 ≤ 1, w2j ≥ 0, P2(w2) ≤ c2. (6)

Assume that P2 is an L1 penalty. It is obvious that if aj ≤ 0, then w2j = 0.
For j such that aj > 0, w2j can be found by solving the optimization problem

minimizew2j :aj>0 −
∑
j:aj>0

ajw2j subject to
∑
j:aj>0

w2
2j ≤ 1,

∑
j:aj>0

|w2j| ≤ c2. (7)

This can be solved using the following update for w2:

w2 ←
S((XT

2 X1w1)+,∆2)

||S((XT
2 X1w1)+,∆2)||2

, (8)

where ∆2 = 0 if this results in ||w2||1 ≤ c2; otherwise, ∆2 > 0 is chosen so
that ||w2||1 = c2. An analogous update step can be derived for w1 if P1 is an
L1 penalty.

2.4 Application of sparse CCA to the DLBCL data

We demonstrate the sparse CCA method on the lymphoma data set of Lenz
et al. (2008), which consists of gene expression and array CGH measurements
on 203 patients with DLBCL. The data set is publicly available at
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11318. There
are 17350 gene expression measurements and 386165 copy number measure-
ments. (In the raw data set, more gene expression measurements are available.
However, we limited the analysis to genes for which we knew the chromoso-
mal location, and we averaged expression measurements for genes for which
multiple measurements were available.) For computational reasons, sets of ad-
jacent CGH spots on each chromosome were averaged before all analyses were
performed. In previous research, gene expression profiling has been used to
define three subtypes of DLBCL, called germinal center B-cell-like (GCB), ac-
tivated B-cell-like (ABC), and primary mediastinal B-cell lymphoma (PMBL)
(Alizadeh et al. 2000, Rosenwald et al. 2002). For each of the 203 observations,
survival time and DLBCL subtype are known.

6
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For chromosome i, we performed sparse CCA(L1, FL) using X1 equal to
expression data of genes on all chromosomes and X2 equal to DNA copy num-
ber data on chromosome i. Tuning parameter values were chosen by permu-
tations; details are given in Appendix A. P-values obtained using the method
in Appendix A, as well as the chromosomes on which the genes corresponding
to nonzero w1 weights are located, can be found in Table 1. Canonical vectors
found on almost all chromosomes were significant, and for the most part, cis
interactions were found. Cis interactions are those for which the regions of
DNA copy number change and the sets of genes with correlated expression
are located on the same chromosome. The presence of cis interactions is not
surprising because copy number gain on a given chromosome could naturally
result in increased expression of the genes that were gained.

We used the CGH and expression canonical variables as features in a mul-
tivariate Cox proportional hazards model to predict survival. Note that X1w1

and X2w2 are vectors in Rn. We also used the canonical variables as features
in a multinomial logistic regression to predict cancer subtype. The resulting p-
values are shown in Table 1. The Cox proportional hazards models predicting
survival from the canonical variables were not significant on most chromo-
somes. However, on many chromosomes, the canonical variables were highly
predictive of DLBCL subtype. Boxplots showing the canonical variables as a
function of DLBCL subtype are displayed in Figure 1 for chromosomes 6 and
9. For chromosome 9, Figure 2 shows w2, the canonical vector corresponding
to copy number, as well as the raw copy number for the samples with largest
and smallest (absolute) value in the canonical variable for the CGH data. It
is not surprising that there are many significant p-values for the prediction of
cancer subtype in Table 1, since the subtypes are defined using gene expres-
sion, and it was found in Lenz et al. (2008) that the subtypes are characterized
by regions of copy number change.

We can also compare the sparse CCA canonical variables obtained on the
DLBCL data to the first principal components that arise if principal compo-
nents analysis (PCA) is performed separately on the expression data and on
the copy number data. PCA and sparse CCA were performed using all of the
gene expression data, and the CGH data on chromosome 3; Figure 3 shows the
resulting canonical variables and principal components. Sparse CCA results in
CGH and expression canonical variables that are highly correlated with each
other, due to the form of the sparse CCA criterion. PCA results in principal
components that are far less correlated with each other, and, as a result, may
yield better separation between the three subtypes. But PCA does not allow
for an integrated interpretation of the expression and CGH data together.

In this section, we assessed the association between the canonical variables

7
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Chr. P-Value Chr. of Genes w/Nonzero Weights P-Value w/Surv. P-Value w/Subtype
1 0 1 1 1 0.346978 0.020115
2 0 2 2 0.139221 0.000336
3 0 3 3 3 0.000395 0
4 0 4 4 0.473788 0.127702
5 0 5 5 5 5 5 0.607717 0.015423
6 0 6 6 6 0.421753 6e-05
7 0 7 7 0.530759 0
8 0 8 8 0.698352 0.000375
9 0 9 9 9 9 9 9 9 9 0.435872 0
10 0 10 10 10 10 10 0.123747 7e-06
11 0 11 11 11 0.344889 0.000265
12 0 12 12 0.436956 0.000557
14 0.02 1 14 0.006953 0
15 0 15 15 15 15 15 15 15 15 0.000552 3.5e-05
16 0 16 16 0.298069 0.029809
17 0 17 17 17 17 17 17 17 0.047078 0.775681
18 0 18 18 0.00619 5e-06
19 0 19 19 10 0.046235 0
20 0 20 20 20 2 3 20 20 20 0.922793 0.004198
21 0 21 21 0.309212 0.012914
22 0.06 22 1 1 0.441799 0.000272

Table 1: Column 1: The number indicates the chromosome to which the
CGH data corresponds. Sparse CCA was performed using all gene expression
measurements, and CGH data from chromosome i only. Column 2: In almost
every case, the canonical vectors found were highly significant. P-values were
obtained using the permutation approach given in Appendix A. Column 3:
For the most part, CGH measurements on chromosome i were found to be
correlated with the expression of sets of genes on chromosome i. That is, the
canonical vectors found for the expression data had non-zero elements only for
genes on chromosome i. Columns 4 and 5: P-values are reported for the
Cox proportional hazards and multinomial logistic regression models that use
the canonical variables to predict survival and cancer subtype.

found using sparse CCA and the clinical outcomes in order to determine if
the results of sparse CCA have biological significance. However, in general, if
a clinical outcome of interest is available, then the sparse sCCA approach of
Section 4 may be appropriate.

2.5 Connection with nearest shrunken centroids

Consider now a new setting in which we have n observations on p features, and
each observation belongs to one of two classes. Let X1 denote the n×p matrix

8

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 28

http://www.bepress.com/sagmb/vol8/iss1/art28
DOI: 10.2202/1544-6115.1470



ABC GCB PMBL

−
3

−
2

−
1

0
1

2
Expression Canonical Variables: Chrom. 6

P−Value is 6.045e−05

●

●

●

ABC GCB PMBL

−
40

−
20

0
10

20

CGH Canonical Variables: Chrom. 6

P−Value is 6.045e−05

●

●

●

●

●

ABC GCB PMBL

−
8

−
6

−
4

−
2

0
2

Expression Canonical Variables: Chrom. 9

P−Value is 2.9e−08

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ABC GCB PMBL
−

50
−

30
−

10
10

CGH Canonical Variables: Chrom. 9

P−Value is 2.9e−08

Figure 1: Sparse CCA was performed using CGH data on a single chromo-
some and all gene expression measurements. For chromosomes 6 and 9, the
gene expression and CGH canonical variables, stratified by cancer subtype, are
shown. It is clear that the values of the canonical variables differ by subtype. P-
values reported are replicated from Table 1; they reflect the extent to which the
canonical variables predict cancer subtype in a multinomial logistic regression
model.

of observations by features, and let X2 be a binary n × 1 matrix indicating
class membership of each observation of X1. In this section, we will show
that sparse CCA applied to X1 and X2 yields a canonical vector w1 that is
closely related to the nearest shrunken centroids solution (NSC, Tibshirani
et al. 2002, Tibshirani et al. 2003).

Assume that each column of X1 has been standardized to have mean zero
and pooled within-class standard deviation equal to one. NSC is a high-
dimensional classification method that involves defining “shrunken” class cen-
troids based on only a subset of the features; each test set observation is then
classified to the nearest shrunken centroid. We first explain the NSC method,
applied to data X1. For 1 ≤ k ≤ 2, we define vectors dk,d

′
k,X

′
1k ∈ Rp as

follows:

dk =
X1k

mk

, d′k = S(dk, δ), X
′
1k = mkd

′
k. (9)
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Figure 2: Sparse CCA was performed using CGH data on chromosome 9, and
all gene expression measurements. The samples with the highest and lowest ab-
solute values in the CGH canonical variable are shown, along with the canonical
vector corresponding to the CGH data. As expected, the sample with the high-
est CGH canonical variable is highly correlated with the CGH canonical vector,
and the sample with the lowest CGH canonical variable shows little correlation.
The sample with highest CGH canonical variable is of subtype PMBL, and the
sample with lowest canonical variable is of subtype ABC. The CGH data on
chromosome 9 consists of 309 features, of which 111 have non-zero weights in
the right-hand panel.

Here, X1k is the mean vector of the features in X1 over the observations in

class k, and mk =
√

1
nk
− 1

n
where nk is the number of observations in class

k. X
′
1k is the shrunken centroid for class k obtained using tuning parameter

δ ≥ 0. As in Section 2.1, S is the soft-thresholding operator.
Now, consider the effect of applying sparse CCA with L1 penalties to data

X1 and X2. Rescale X2 so that the class 1 values are 1
n1

and the class 2 values

are − 1
n2

. The sparse CCA criterion is

maximizew1,w2w
T
1 XT

1 X2w2

subject to ||w1||2 ≤ 1, ||w2||2 ≤ 1, ||w1||1 ≤ c1, ||w2||1 ≤ c2. (10)

Since w2 ∈ R1, the constraints on its value result in w2 = 1. The criterion
reduces to

maximizew1w
T
1 XT

1 X2 subject to ||w1||2 ≤ 1, ||w1||1 ≤ c1, (11)
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Figure 3: Sparse CCA and PCA were performed using CGH data on chromo-
some 3, and all gene expression measurements. The resulting canonical vari-
ables and principal components are shown. The CGH and expression canonical
variables are highly correlated with each other. Both sparse CCA and PCA
result in some separation between the three DLBCL subtypes, although PCA
results in better separation because the first principal components of the CGH
and expression data are less correlated with each other.

which can be rewritten as

maximizew1(X11 −X12)
Tw1 subject to ||w1||2 ≤ 1, ||w1||1 ≤ c1. (12)

The solution to (12) is

w1 =
S(X11 −X12,∆)

||S(X11 −X12,∆)||2
=

S((1 + n1

n2
)X11,∆)

||S((1 + n1

n2
)X11,∆)||2

(13)

where ∆ = 0 if that results in ||w1||1 ≤ c1; otherwise, ∆ > 0 is chosen so that
||w1||1 = c1. So sparse CCA yields a canonical vector that is proportional to

the shrunken centroid X
′
11 when the tuning parameters for NSC and sparse

CCA are chosen appropriately.

3 Sparse multiple CCA

3.1 The sparse multiple CCA method

CCA and sparse CCA can be used to perform an integrative analysis of two
data sets with features on a single set of samples. But what if more than two
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such data sets are available? A number of approaches for generalizing CCA
to more than two data sets have been proposed in the literature, and some of
these extensions are summarized in Gifi (1990). We will focus on one of these
proposals for multiple-set CCA.

Let the K data sets be denoted X1, ...,XK ; data set k contains pk variables,
and each variable has mean zero and standard deviation one as in previous
sections. Then, the single-factor multiple-set CCA criterion involves finding
w1, ...,wK that maximize∑

i<j

wT
i XT

i Xjwj subject to wT
k XT

kXkwk = 1 ∀k, (14)

where wk ∈ Rpk . It is easy to see that when K = 2, then multiple-set CCA
simplifies to ordinary CCA. We can develop a method for sparse multiple CCA
by imposing sparsity constraints on this natural formulation for multiple-set
CCA. In the spirit of our criterion for sparse CCA with two sets of variables
(2), we assume that the features are independent within each data set: that
is, XT

kXk = I for each k. Then, our criterion for sparse multiple CCA (sparse
mCCA) is as follows:

maximizew1,...,wK

∑
i<j

wT
i XT

i Xjwj subject to ||wi||2 ≤ 1, Pi(wi) ≤ ci ∀i, (15)

where Pi are convex penalty functions. Then, wi is the canonical vector associ-
ated with Xi. If Pi is an L1 or fused lasso penalty and ci is chosen appropriately,
then wi will be sparse.

It is not hard to see that just as (2) is biconvex in w1 and w2, (15) is
multiconvex in w1, ...,wK . That is, with wj held fixed for all j 6= i, (15) is
convex in wi. This suggests an iterative algorithm that increases the objective
function of (15) at each iteration.

Algorithm for sparse mCCA:

1. For each i, fix an initial value of wi ∈ Rpk .

2. Repeat until convergence: For each i, let

wi ← argmaxwi
wT
i XT

i (
∑
j 6=i

Xjwj) subject to ||wi||2 ≤ 1, Pi(wi) ≤ ci.

(16)
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For instance, if Pi is an L1 penalty, then the update takes the form

wi ←
S(XT

i (
∑

j 6=i Xjwj),∆i)

||S(XT
i (
∑

j 6=i Xjwj),∆i)||2
, (17)

where ∆i = 0 if this results in ||wi||1 ≤ ci; otherwise, ∆i > 0 is chosen such
that ||wi||1 = ci.

We demonstrate the performance of sparse mCCA on a simple simulated
example. Data were generated according to the model

Xi = uwT
i + εi, 1 ≤ i ≤ 3 (18)

where u ∈ R50, w1 ∈ R100, w2 ∈ R200, w3 ∈ R300. Only the first 20, 40, and
60 elements of w1, w2, and w3 were nonzero, respectively. Sparse mCCA was
run on this data, and the resulting estimates of w1, w2, and w3 are shown in
Figure 4.

A permutation algorithm for selecting tuning parameter values and assess-
ing significance of sparse mCCA can be found in Appendix A. In addition, an
algorithm for obtaining multiple sparse mCCA factors is given in Appendix B.
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Figure 4: Three data sets X1, X2, and X3 are generated under a simple model,
and sparse mCCA is performed. The resulting estimates of w1, w2, and w3

are fairly accurate at distinguishing between the elements of wi that are truly
nonzero (red) and those that are not (black). From left to right, the three
canonical vectors shown have 57, 67, and 92 nonzero elements.

3.2 Application of sparse mCCA to DLBCL copy num-
ber data

If CGH measurements are available on a set of patient samples, then one
may wonder whether copy number changes in genomic regions on separate
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chromosomes are correlated. For instance, certain genomic regions may tend
to be coamplified or codeleted.

To answer this question for a single pair of chromosomes, we can perform
sparse CCA(FL, FL) with two data sets, X1 and X2, where X1 contains the
CGH measurements on the first chromosome of interest and X2 contains the
CGH measurements on the second chromosome of interest. If copy number
change on the first chromosome is independent of copy number change on the
second chromosome, then we expect the corresponding p-value obtained using
the method of Appendix A not to be small. A small p-value indicates that copy
number changes on the two chromosomes are more correlated with each other
than one would expect due to chance. However, in general, there are

(
24
2

)
pairs

of chromosomes that can be tested for correlated patterns of amplification and
deletion; this leads to a multiple testing problem and excessive computation.
Instead, we take a different approach, using sparse mCCA. We apply sparse
mCCA to data sets X1, ...,X24, where Xi contains the CGH measurements on
chromosome i. A fused lasso penalty is used on each data set. The goal is to
identify correlated regions of gain and loss across the entire genome.

This method is applied to the DLBCL data set mentioned previously. We
first denoise the samples by applying the fused lasso to each sample individu-
ally, as in Tibshirani & Wang (2008). We then perform sparse mCCA on the
resulting smoothed CGH data. The canonical vectors that result are shown
in Figure 5. From the figure, one can conclude that complex patterns of gain
and loss tend to co-occur. It is unlikely that a single sample would display
the entire pattern found; however, samples with large values in the canonical
variables most likely contain some of the patterns shown in the figure.

4 Sparse supervised CCA

In Section 2.4, we determined that on the lymphoma data, many of the canon-
ical variables obtained using sparse CCA are highly associated with tumor
subtype (and for some chromosomes, the canonical variables are also asso-
ciated with survival time). Though an outcome was available, we took an
unsupervised approach in performing sparse CCA. In this section, we will de-
velop a framework to directly make use of an outcome in sparse CCA. Our
method for sparse supervised CCA (sparse sCCA) is closely related to the su-
pervised principal components analysis (supervised PCA) method of Bair &
Tibshirani (2004) and Bair et al. (2006), and so we begin with an overview of
that method.
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Figure 5: Sparse mCCA was performed on the DLBCL copy number data,
treating each chromosome as a separate “data set”, in order to identify genomic
regions that are coamplified and/or codeleted. The canonical vectors w1, ...,w24

are shown. Positive values of the canonical vectors are shown in red, and
negative values are in green.

4.1 Supervised PCA

Principal components regression (PCR; see e.g. Massy 1965) is a method for
predicting an outcome y ∈ Rn from a data matrix X ∈ Rn×p. Assume that
the columns of X have been standardized. Then, PCR involves regressing y
onto the first few columns of XV, where X = UDVT is the singular value
decomposition of X. Since V is estimated in an unsupervised manner, it is
not guaranteed that the first few columns of XV will predict y well, even if
some of the features in X are correlated with y.

Bair & Tibshirani (2004) and Bair et al. (2006) propose the use of su-
pervised PCA, which is a semisupervised approach. Their method can be
described simply:

1. On training data, the features that are most associated with the outcome
y are identified.

2. PCR is performed using only the features identified in the previous step.

Theoretical results regarding the performance of this method under a latent
variable model are presented in Bair et al. (2006).
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4.2 The sparse supervised CCA method

Suppose that a quantitative outcome is available; that is, we have y ∈ Rn in
addition to X1 and X2. Then we might seek linear combinations of the vari-
ables in X1 and X2 that are highly correlated with each other and associated
with the outcome.

We define the criterion for supervised CCA as follows:

maximizew1,w2 wT
1 XT

1 X2w2 subject to ||w1||2 ≤ 1, ||w2||2 ≤ 1,

w1j = 0 ∀j /∈ Q1, w2j = 0 ∀j /∈ Q2 (19)

where Q1 is the set of features in X1 that are most correlated with y, and Q2

is the set of features in X2 that are most correlated with y. The number of
features in Q1 and Q2, or alternatively the correlation threshold for features
to enter Q1 and Q2, can be treated as a tuning parameter or can simply be
fixed. If X1 = X2, then the criterion (19) simplifies to supervised PCA; that
is, w1 and w2 are equal to each other and to the first principal component of
the subset of the data containing only the features that are most associated
with the outcome.

sCCA can be easily extended to give sparse sCCA,

maximizew1,w2 wT
1 XT

1 X2w2 subject to ||w1||2 ≤ 1, ||w2||2 ≤ 1, P1(w1) ≤ c1,

P2(w2) ≤ c2, w1j = 0 ∀j /∈ Q1, w2j = 0 ∀j /∈ Q2, (20)

where as usual, P1 and P2 are convex penalty functions.
We have discussed the possibility of y being a quantitative outcome (e.g.

tumor diameter), but other options exist as well. For instance, y could be
a time to event (e.g. a possibly censored survival time) or a class label (for
instance, DLBCL subtype). Our definition of sparse sCCA must be general-
ized in order to accommodate other outcome types. If y is a survival time,
then for each feature, we can compute the score statistic (or Cox score) for the
univariate Cox proportional hazards model that uses that feature to predict
the outcome. Only features with sufficiently high (absolute) Cox scores will be
in the sets Q1 and Q2. In the case of a multiple class outcome, only features
with a sufficiently high F-statistic for a one-way ANOVA will be in Q1 and
Q2. Other outcome types could be incorporated in an analogous way. The
algorithm for sparse sCCA can be written as follows:

Algorithm for sparse sCCA:

1. Let X̃1 and X̃2 denote the submatrices of X1 and X2 consisting of the
features in Q1 and Q2. Q1 and Q2 are calculated as follows:
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(a) In the case of an L1 penalty on wi, Qi is the set of indices of the
features in Xi that have highest univariate association with the
outcome.

(b) In the case of a fused lasso penalty on wi, the vector of univariate as-
sociations between the features in Xi and the outcome is smoothed
using the fused lasso. The resulting smoothed vector is thresholded
to obtain the desired number of nonzero cofficients. Qi contains the
indices of the coefficients that are nonzero after thresholding.

2. Perform sparse CCA using data X̃1 and X̃2.

Note that the fused lasso case is treated specially because one wishes for the
features included in X̃i to be contiguous, so that smoothness in the resulting
wi weights will translate to smoothness in the weights of the original variable
set. Algorithms for tuning parameter selection and assessment of significance,
as well as a method for obtaining multiple canonical vectors, are given in the
Appendix.

We explore the performance of sparse sCCA with a quantitative outcome
on a toy example. Data are generated according to the model

X1 = uwT
1 + ε1, X2 = uwT

2 + ε2, y = u, (21)

with u ∈ R50, w1 ∈ R500, w2 ∈ R1000, ε1 ∈ R50×500, ε2 ∈ R50×1000. 50 elements
of w1 and 100 elements of w2 are non-zero. The first canonical vectors of sparse
CCA and sparse sCCA (using L1 penalties) were computed for a range of values
of c1 and c2. In Figure 6, the resulting number of true positives (features that
are nonzero in w1 and w2 and also in the estimated canonical vectors) are
shown on the y-axis, as a function of the number of nonzero elements of the
canonical vectors. It is clear that greater numbers of true positives are obtained
when the outcome is used. In Figure 7, the canonical variables obtained using
sparse CCA and sparse sCCA are plotted against the outcome. The canonical
variables obtained using sparse sCCA are correlated with the outcome, and
those obtained using sparse CCA are not. Note that under the model (21), in
the absence of noise, the canonical variables are proportional to u; therefore,
sparse sCCA more accurately uncovers the true canonical variables.

In theory, one could choose Q1 and Q2 in Step 1 of the sparse sCCA
algorithm to contain fewer than n features; then, ordinary CCA could be
performed instead of sparse CCA in Step 2. However, we recommend using a
less stringent cutoff for Q1 and Q2 in Step 1, and instead performing further
feature selection in Step 2 via sparse CCA.
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Figure 6: Sparse CCA and sparse sCCA were performed on a toy example, for
a range of values of the tuning parameters in the sparse CCA criterion. The
number of true positives in w1 and w2 is shown as a function of the number
of nonzero elements in the estimates of the canonical vectors.
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Figure 7: Sparse CCA and sparse sCCA were performed on a toy example.
The canonical variables obtained using sparse sCCA are highly correlated with
the outcome; those obtained using sparse CCA are not.
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4.3 Connection with sparse mCCA

Given X1, X2, and a two-class outcome y, one could perform sparse mCCA by
treating y as a third data set. This would yield a different but related method
for performing sparse sCCA in the case of a two-class outcome.

Note that the outcome y is a matrix in Rn×1. We code the two classes (of
n1 and n2 observations, respectively) as λ

n1
and − λ

n2
. Assume that the columns

of X1 and X2 have mean zero and pooled within-class standard deviation equal
to one. Consider the sparse mCCA criterion with L1 penalties, applied to data
sets X1, X2, and y:

maximizew1,w2,w3 wT
1 XT

1 X2w2 + wT
1 XT

1 yw3 + wT
2 XT

2 yw3

subject to ||wi||2 ≤ 1, ||wi||1 ≤ ci ∀i. (22)

Note that since w3 ∈ R1, it follows that w3 = 1. So we can re-write the
criterion (22) as

maximizew1,w2w
T
1 XT

1 X2w2 + wT
1 XT

1 y + wT
2 XT

2 y

subject to ||w1||2 ≤ 1, ||w2||2 ≤ 1, ||w1||1 ≤ c1, ||w2||1 ≤ c2. (23)

Now, this criterion is biconvex and leads naturally to an iterative algorithm.
However, this is not the approach that we take with our sparse sCCA method.
Instead, notice that

wT
1 XT

1 y = λ(X11 −X12)
Tw1 = λ

√
1

n1

+
1

n2

tT1 w1, (24)

where X1k ∈ Rp is the mean vector of the observations in X1 that belong
to class k, and where t1 ∈ Rp is the vector of two-sample t-statistics testing
whether the classes defined by y have equal means within each feature of X1.

Similarly, wT
2 XT

2 y = λ
√

1
n1

+ 1
n2

tT2 w2 for t2 defined analogously. So we can

rewrite (23) as

maximizew1,w2w
T
1 XT

1 X2w2 + λ

√
1

n1

+
1

n2

(tT1 w1 + tT2 w2)

subject to ||w1||2 ≤ 1, ||w2||2 ≤ 1, ||w1||1 ≤ c1, ||w2||1 ≤ c2. (25)

As λ increases, the elements of w1 and w2 that correspond to large |t1| and |t2|
values increase in absolute value relative to those that correspond to smaller
|t1| and |t2| values.

Rather than adopting the criterion (25) for sparse sCCA, our sparse sCCA
criterion results from assigning nonzero weights only to the elements of w1 and
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w2 corresponding to large |t1| and |t2|. We prefer our proposed sparse sCCA
algorithm because it is simple, generalizes to the supervised PCA method when
X1 = X2, and extends easily to non-binary outcomes.

4.4 Application of sparse sCCA to DLBCL data

We evaluate the performance of sparse sCCA on the DLBCL data set, in
terms of the association of the resulting canonical variables with the survival
and subtype outcomes. We repeatedly split the observations into training and
test sets (75% / 25%). Let (Xtrain

1 ,Xtrain
2 ,ytrain) denote the training data, and

let (Xtest
1 ,Xtest

2 ,ytest) denote the test data. (y can denote either the survival
time or the cancer subtype.) We perform sparse sCCA analysis on the train-
ing data. As in Section 2.4, for each chromosome, sparse sCCA is run using
CGH measurements on that chromosome, and all available gene expression
measurements. An L1 penalty is applied to the expression data, and a fused
lasso penalty is applied to the CGH data. Let wtrain

1 ,wtrain
2 denote the canon-

ical vectors obtained. We then use Xtest
1 wtrain

1 and Xtest
2 wtrain

2 as features in
a Cox proportional hazards model or a multinomial logistic regression model
to predict ytest. The resulting p-values are shown in Figure 8 for both the
survival and subtype outcomes; these are compared to the results obtained if
the analysis is repeated using unsupervised sparse CCA on the training data.
On the whole, for the subtype outcome, the p-values obtained using sparse
sCCA are much smaller than those obtained using sparse CCA. The canoni-
cal variables obtained using sparse CCA and sparse sCCA with the survival
outcome are not significantly associated with survival. In this example, sparse
CCA was performed so that 20% of the features in X1 and X2 were contained
in Q1 and Q2 in the sparse sCCA algorithm.

5 Discussion

As it becomes more commonplace for biomedical researchers to perform mul-
tiple assays on the same set of patient samples, methods for the integra-
tive analysis of two or more high-dimensional data sets will become increas-
ingly important. The sparse CCA methods previously proposed in the lit-
erature (Parkhomenko et al. 2007, Waaijenborg et al. 2008, Parkhomenko
et al. 2009, Le Cao et al. 2009, Witten et al. 2009) provide an attractive
framework for performing an integrative analysis of two data sets. In this pa-
per, we have developed extensions to sparse CCA that can be used to apply
the method to the case of more than two data sets, and to incorporate an
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Figure 8: On a training set, sparse CCA and sparse sCCA were performed
using CGH measurements on a single chromosome, and all available gene ex-
pression measurements. The resulting test set canonical variables were used to
predict survival time and DLBCL subtype. Median p-values (over training set
/ test set splits) are shown.

outcome into the analysis.

The methods proposed in this paper will be available on CRAN as part of the
PMA (Penalized Multivariate Analysis) package.

APPENDIX

A Tuning parameter selection and calculation

of p-values

We first present a permutation-based algorithm for selection of tuning param-
eters and calculation of p-values for sparse CCA. Note that a number of meth-
ods have been proposed in the literature for selecting tuning parameters for
sparse CCA (see e.g. Waaijenborg et al. 2008, Parkhomenko et al. 2009, Witten
et al. 2009). The method proposed here has the advantage over the propos-
als of Waaijenborg et al. (2008) and Parkhomenko et al. (2009) that it does
not require splitting a possibly small set of samples into a training set and a
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test set. Witten et al. (2009) present a method for tuning parameter selection
for their penalized matrix decomposition; however, it does not extend in a
straightforward way to the sparse CCA case.

Algorithm to select tuning parameters and determine significance
for sparse CCA:

1. For each tuning parameter value (generally this will be a two-dimensional
vector) Tj being considered:

(a) Compute w1 and w2, the canonical vectors using data X1 and X2

and tuning parameter Tj. Compute dj = Cor(X1w1,X2w2).

(b) For i ∈ 1, ..., N , where N is some large number of permutations:

i. Permute the rows of X1 to obtain the matrix Xi
1, and compute

canonical vectors wi
1 and wi

2 using data Xi
1 and X2 and tuning

parameter Tj.

ii. Compute dij = Cor(Xi
1w

i
1,X2w

i
2).

(c) Calculate the p-value pj = 1
N

∑N
i=1 1di

j≥dj
.

2. Choose the tuning parameter Tj corresponding to the smallest pj. Al-
ternatively, one can choose the tuning parameter Tj for which (dj −
1
N

∑
i d

i
j)/sd(dij) is largest, where sd(dij) indicates the standard deviation

of d1
j , ..., d

N
j . The resulting p-value is pj.

Since multiple tuning parameters Tj are considered in the above algorithm,
a strict cut-off for the p-value pj should be used in order to avoid problems
associated with multiple testing.

Given the above algorithm, the analogous method for selecting tuning pa-
rameters and determining significance for sparse sCCA is straightforward. For
simplicity, we assume that the threshold for features to enter Q1 and Q2 in the
sparse sCCA algorithm is fixed (not a tuning parameter).

Algorithm to select tuning parameters and determine significance
for sparse sCCA:

1. For each tuning parameter (generally this will be a two-dimensional vec-
tor) Tj being considered:

(a) Compute w1 and w2, the supervised canonical vectors using data
X1, X2, and y and tuning parameter Tj. Compute dj = Cor(X1w1,X2w2).
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(b) For i ∈ 1, ..., N , where N is some large number of permutations:

i. Permute the rows of X1 and X2 separately to obtain the matri-
ces Xi

1 and Xi
2, and compute supervised canonical vectors wi

1

and wi
2 using data Xi

1, Xi
2, y, and tuning parameter Tj.

ii. Compute dij = Cor(Xi
1w

i
1,X

i
2w

i
2).

(c) Calculate the p-value pj = 1
N

∑N
i=1 1di

j≥dj
.

2. Choose the tuning parameter Tj corresponding to the smallest pj. Al-
ternatively, one can choose the tuning parameter Tj for which (dj −
1
N

∑
i d

i
j)/sd(dij) is largest, where sd(dij) indicates the standard deviation

of d1
j , ..., d

N
j . The resulting p-value is pj.

Note that in the permutation step, we permute the rows of X1 and X2 without
permuting y; this means that under the permutation null distribution, y is not
correlated with the columns of X1 and X2.

We can similarly use the following permutation-based algorithm to assess
the significance of the canonical vectors obtained using sparse mCCA:

Algorithm to select tuning parameters and determine significance
for sparse mCCA:

1. For each tuning parameter (generally this will be aK-dimensional vector)
Tj being considered:

(a) Compute w1, ...,wK , the canonical vectors using data X1, ...,XK

and tuning parameter Tj. Compute dj =
∑

s<t Cor(Xsws,Xtwt).

(b) For i ∈ 1, ..., N , where N is some large number of permutations:

i. Permute the rows of X1, ...,XK separately to obtain the matri-
ces Xi

1, ...,X
i
K , and compute canonical vectors wi

1, ...,w
i
K using

data Xi
1, ...,X

i
K and tuning parameter Tj.

ii. Compute dij =
∑

s<t Cor(Xi
sw

i
s,X

i
tw

i
t).

(c) Calculate the p-value pj = 1
N

∑N
i=1 1di

j≥dj
.

2. Choose the tuning parameter Tj corresponding to the smallest pj. Al-
ternatively, one can choose the tuning parameter Tj for which (dj −
1
N

∑
i d

i
j)/sd(dij) is largest, where sd(dij) indicates the standard deviation

of d1
j , ..., d

N
j . The resulting p-value is pj.
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B Extension of methods to obtain multiple

canonical vectors

We first review the method of Witten et al. (2009) for obtaining multiple
sparse CCA canonical vectors. Note that the sparse CCA algorithm uses the
cross-product matrix Y = XT

1 X2 and does not require knowledge of X1 and
X2 individually.

Algorithm for obtaining J sparse CCA factors:

1. Let Y1 ← XT
1 X2.

2. For j ∈ 1, ..., J :

(a) Compute wj
1 and wj

2 by applying the single-factor sparse CCA al-
gorithm to data Yj.

(b) Yj+1 ← Yj − (wj
1

T
Yjw2

j)wj
1w

j
2

T
.

3. wj
1 and wj

2 are the jth canonical vectors.

To obtain J sparse sCCA factors, submatrices X̃1 and X̃2 are formed from
the features most associated with the outcome; the algorithm for obtaining J
sparse CCA factors is then applied to this new data.

To obtain J sparse mCCA factors, note that the sparse mCCA algorithm
requires knowledge only of the

(
K
2

)
cross-product matrices of the form XT

s Xt

with s < t, rather than the raw data Xs and Xt.

Algorithm for obtaining J sparse mCCA factors:

1. For each 1 ≤ s < t ≤ K, let Y1
st ← XT

s Xt.

2. For j ∈ 1, ..., J :

(a) Compute wj
1, ...,w

j
K by applying the single-factor sparse mCCA

algorithm to data Yj
st for 1 ≤ s < t ≤ K.

(b) Yj+1
st ← Yj

st − (wj
s
T
Yj
stw

j
t )w

j
sw

j
t

T
.

3. wj
1, ...,w

j
K are the jth canonical vectors.
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